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Ourense, 23 - 25 de outubro de 2025

Addressing Structural Breaks in the Seasonal Adjustment of Official Statistics

Cheyenne Amoroso1, Siem Jan Koopman2, Carolina Garćıa-Martos3, Germán Aneiros1, José A. Vilar1,
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3 Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, España.

ABSTRACT

Seasonal adjustment is a key task in official statistics to better understand the dynamics of time
series. Long socio-economic series, however, are often affected by structural breaks due to crises
or institutional reforms. Ignoring such breaks leads to distorted adjustments and misleading
interpretations. This paper proposes a state space approach based on the Basic Structural
Model with time-varying disturbance variances, allowing for both abrupt and gradual changes.
Breakpoints are detected through standardized innovations and smoothed residuals, serving
as empirical measures of local volatility. The method ensures a coherent decomposition while
remaining fully compatible with the Kalman filter, making it operationally feasible for official
statistics. We illustrate the framework on Spanish Statistical Office (INE) time series, showing
improved coherence of the component decomposition around identified breaks.
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1. INTRODUCTION

A central task in official statistics is the production of seasonally adjusted series, that is, series from
which recurrent and systematic fluctuations, such as those caused by holidays or weather conditions, have
been removed. This adjustment is crucial, as seasonal patterns can obscure both short- and long-term
movements, thereby hindering the identification of underlying dynamics. The resulting adjusted series
provides a clearer representation of the fundamental behaviour of the variable, enhancing interpretability
and supporting more reliable forecasting and evidence-based decision-making.

With the aim of harmonising practices across Europe and improving the comparability of national
infra-annual statistics, the European Statistical System (ESS) published in 2009 the first set of Guide-
lines on Seasonal Adjustment, Eurostat (2009). A revised edition was released in 2015, Eurostat (2015),
presenting both theoretical foundations and practical recommendations in an accessible framework. Fol-
lowing these initiatives, the Spanish Statistical Office (INE) issued its own guidelines for the treatment of
socio-economic time series, INE (2019). These efforts have contributed to the standardisation of seasonal
adjustment procedures within official statistics, while also encouraging methodological innovation.

Within the ESS framework, two approaches are recognised as equally valid for seasonal adjustment:
ARIMA model-based adjustment and fixed filter-based adjustment. Currently, the Spanish Statistical
Office applies the well-established TRAMO-SEATS method, Gómez and Maravall (1996), an ARIMA model-
based approach which involves two main stages: first, a Reg-ARIMA model is estimated to identify and
correct outliers while accounting for calendar effects such as holidays or variations in month length. Then,
signal extraction is performed using Wiener–Kolmogorov filtering, a sophisticated technique that separates
the underlying signal from irregular noise.

However, socio-economic time series often span long periods during which economic conditions, social
dynamics, and institutional frameworks may change substantially, leading to shifts in their underlying pat-
terns. Such developments challenge the stability assumption underlying traditional seasonal adjustment
procedures, which are typically based on a single parametric model fitted to the entire sample. A well-
documented example is the 2008 financial crisis, which introduced profound and lasting structural changes.
In this context, two issues become particularly relevant for National Statistical Offices: the identification
of the points in time at which structural breaks occur and the development of a robust methodology for
seasonal adjustment that remains reliable in their presence.



The present work addresses these challenges by proposing a new framework based on state space mod-
els, which provides the necessary flexibility to explicitly account for structural breaks and accommodate
time-varying dynamics. This ensures a coherent decomposition of trend, seasonal, and irregular compo-
nents in long series affected by instability, making the methodology particularly well-suited for official
statistics.

The remainder of this paper is structured as follows. Section 2 introduces the state space modelling
framework, highlighting its relevance for seasonal adjustment. Section 3 presents time-dependent mod-
els as a natural extension to handle changing dynamics. Section 4 discusses the detection of structural
breakpoints and their implications for time series analysis. Section 5 illustrates the proposed methodology
through an application to real socio-economic series produced by the Spanish Statistical Office. Finally,
Section 6 summarises the main findings and outlines directions for future research.

2. STATE SPACE MODELS

State space models provide a general and flexible framework for modelling time series, allowing a wide
range of dynamic processes to be represented through unobserved components that evolve over time. This
makes them particularly well suited for tasks such as seasonal adjustment and trend-cycle decomposition.
In order to establish the foundation for the proposed methodology, this section reviews the fundamental
concepts and notation of state space models, as outlined by Durbin and Koopman (2012).

In the general linear Gaussian state space model, the observed series yt is linked to a latent state vector
αt through two sets of equations:

yt = Ztαt + εt, εt ∼ N (0, Ht), (1)

αt+1 = Ttαt +Rtηt, ηt ∼ N (0, Qt). (2)

Equation (1), known as observation equation, relates the observed variable yt to the latent state αt via
the design matrix Zt. The disturbance term εt accounts for measurement noise or other short-term effects
not captured by the state. Equation (2), referred to as state equation, describes the evolution of αt over
time via the transition matrix Tt, with innovations ηt having covariance matrix Qt. The matrix Rt allows
these innovations to influence specific elements of the state vector rather than the entire vector.

A particularly relevant specification within the state space framework is the Basic Structural Model
(BSM), which decomposes the series into interpretable components

yt = µt + γt + εt, (3)

µt+1 = µt + βt + ηµ,t, (4)

βt+1 = βt + ηβ,t, (5)

γt+1 = −
s−1∑
j=1

γt+1−j + ηγ,t, (6)

where µt is the level, βt the slope, γt the seasonal component of period s, and εt the irregular disturbance.
The innovations ηµ,t, ηβ,t, ηγ,t are mutually uncorrelated white noise processes with variances σ2

µ, σ
2
β , σ

2
γ ,

respectively.

The BSM offers several advantages for seasonal adjustment. Its additive structure provides a transpar-
ent interpretation of the decomposition, while the stochastic treatment of components allows for flexibility
in adapting to changes in the data. It is also the foundation of methods currently used in official statistics,
such as TRAMO-SEATS, which makes it a natural benchmark for methodological extensions.

In its standard formulation, the BSM assumes constant variances for the state disturbances. While
convenient, this assumption may be unrealistic for long socio-economic series affected by events such as
economic crises, institutional reforms, or methodological changes. In our context, relaxing this assumption
is key: by allowing the variances of the disturbances to change across regimes, the BSM becomes a power-
ful tool to capture structural breaks without losing coherence in the decomposition. This formulation not
only preserves interpretability and flexibility, but also provides the natural statistical setting, through the
Kalman filter and its extensions, to accommodate structural instability in official statistics.



3. PIECEWISE DYNAMIC MODEL

Building on the state space formulation of the Basic Structural Model, we now turn to the problem
of seasonal adjustment in the presence of structural breaks. Such breaks challenge the assumption of pa-
rameter constancy that underpins traditional seasonal adjustment methods, as a single model estimated
over the full sample may fail to capture the heterogeneity between stable and unstable periods. A natural
way to address this issue within the state space framework is to allow for regime-specific dynamics while
maintaining a unified structure linking the regimes. Rather than treating each sub-period in isolation,
our approach models the transition across regimes in a way that preserves both the interpretability and
coherence of the extracted components.

In this section, we focus on the case where the locations of structural breaks are known in advance
and we denote them as a and b. For expositional clarity, we distinguish three regimes: a pre-break pe-
riod or Regime I (a ≤ t), a transitional phase or Regime II (a < t < b) and a post-break period or
Regime III (t ≥ b). Regimes I and III are assumed to reflect relatively stable dynamics, while Regime
II corresponds to the period surrounding the break, where parameter instability is expected. The key
element of the proposed approach lies in the treatment of the disturbance variances across these regimes.
For Regimes I and III, independent estimates of the BSM are obtained via maximum likelihood, yielding
variance structures that serve as anchors. The transitional period is then modelled by allowing the vari-
ances of the state disturbances to evolve between these anchors, ensuring continuity in the decomposition
and avoiding spurious dynamics that would arise from fitting an independent model to an unstable interval.

The distinction between abrupt and gradual changes plays a central role in this specification. An abrupt
change corresponds to a sudden shift in the variance of a disturbance, typically linked to extraordinary
events such as financial crises, institutional reforms, or methodological revisions in statistical practice.
In contrast, a gradual change reflects a progressive adjustment in the variance, arising from slow-moving
transformations in the economy or the incremental adoption of new behavioural patterns. Based on this
clarification, the treatment of the variances is as follows:

• Gradual changes: when the variance of a disturbance changes gradually, it is interpolated smoothly
between the pre- and post-break regimes using weights wt ∈ [0, 1], which increase from 0 in Regime I
to 1 in Regime III:

wt =



0, t ≤ a,

1

1 + exp

(
−
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2

−
∣∣ t− a+b

2
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) , a < t < b,

1, t ≥ b.

(7)

The variance is then computed as a weighted average of the pre- and post-break variances:

σ2
t = (1− wt)σ

2
(I) + wtσ

2
(III).

• Abrupt changes: When diagnostics indicate a sudden shift in the variance, it is estimated directly
within the transition period without interpolation. In this case, the variance is specified piecewise:

σt =


σ2
(I), t ≤ a,

σ2
(II), a < t < b,

σ2
(III), t ≥ b.

(8)

This specification isolates the abrupt shock while maintaining coherence of the variance outside the
transition interval.

The treatment of individual components reflects their different statistical roles. For the slope (βt) and
seasonal (γt) components, variances are always assumed to change gradually, and smooth interpolation is
applied. By contrast, the irregular (εt) and level (µt) components may undergo abrupt or gradual changes,
which are determined through diagnostic assessment. This distinction ensures that the decomposition
adapts flexibly to the nature of the underlying instability.

All unknown quantities in the model are estimated jointly by maximising the Gaussian likelihood via
the Kalman filter. The Kalman smoother then produces coherent estimates of the trend, seasonal, and
irregular components across regimes, ensuring that the resulting seasonal adjustment remains statistically
consistent even in the presence of structural breaks.



4. DETECTION OF STRUCTURAL BREAKPOINTS

Up to this point, the methodology has assumed that the locations of structural breaks are known.
However, in practice, breakpoints are often unknown and must be inferred from the data. Accurate detec-
tion of these points is crucial, as misidentifying the timing or number of breaks can lead to biased variance
estimates and distort the seasonal adjustment. In this section, we describe a systematic approach for de-
tecting structural breaks in long time series, focusing on changes in the variance of the state disturbances,
which are central to the regime-based modelling strategy introduced in the previous section.

The detection procedure exploits information from residual diagnostics, smoothed component esti-
mates, and variance patterns. The starting point is to fit a BSM to the full sample under the (incorrect)
assumption of parameter constancy. This deliberate misspecification provides residuals that are informative
about structural instability, as deviations from white-noise behaviour typically signal potential breakpoints.

The first set of diagnostics is given by the one-step-ahead prediction errors, also known as innovations
or model residuals. These are computed as

νt = yt − E(yt | y1:t−1),

with distribution
νt ∼ N (0, Ft), Ft = ZtPt|t−1Z

⊤
t +Ht,

where Pt|t−1 = Var(αt | y1:t−1) is the a priori state prediction error variance. These are the key quantities
used in the Kalman filter. For diagnostic purposes, the innovations are standardised using Ft, obtaining
the standardised residuals

ν̃t = F
−1/2
t νt,

which, under correct specification, should resemble i.i.d. standard normal noise. Departures from this
behaviour provide the first indication of possible structural breaks.

Since innovations measure the unexplained part of the model, their squared values act as local proxies
for volatility. If the system is subject to variance breaks, these squared residuals should display persistent
shifts away from their expected value. To smooth high-frequency noise and highlight persistent deviations,
we compute rolling means of the squared residuals using a symmetric window. For a chosen window size
k, we define

• Right-aligned mean:

r̄
(R)
t =

1

k

t∑
j=t−k+1

rj ,

• Left-aligned mean:

r̄
(L)
t =

1

k

t+k−1∑
j=t

rj ,

where rt = ν̃2
t . These rolling means act as local estimators of the variance, with directional sensitivity:

the left-aligned mean anticipates variance increases, while the right-aligned mean captures their persistence.

We then set empirical thresholds and identify exceedances as signals of instability. The lower bound a
of a breakpoint region is derived from r̄

(L)
t , while the upper bound b is obtained from r̄

(R)
t . The resulting

interval [a, b] is interpreted as a breakpoint region, consistent with the working hypothesis that changes
occur in the variances of the state disturbances.

This methodology is conceptually related to classical change-point detection techniques such as CUSUM
or MOSUM. In those methods, cumulative or moving sums of residuals are monitored to detect depar-
tures from stability. Here, instead of cumulative means, we use rolling averages of squared residuals and
smoothed disturbances, explicitly targeting changes in variance rather than mean shifts. This makes the
procedure well-suited to the regime-switching variance framework assumed in Section 3.

Once a structural change window [a, b] has been identified, the next step is to determine the nature
of the change: whether it is abrupt or gradual, and to which component it can be attributed. This is
done by analysing the smoothed residuals (or disturbances), defined as the conditional expectations of the
structural shocks given the full sample:

η̂t = E(ηt | y1:T ),



where ηt collects the disturbances associated with the level, slope and seasonal components. Under correct
specification, the smoothed disturbances are conditionally unbiased estimators of the true shocks, and their
squared values behave as empirical proxies of the corresponding variances:

E
[
η̂2
t

]
≈ Var(ηt).

To characterise the dynamics of the variance around a breakpoint, we split the time span into three
non-overlapping periods: before the break (t < a), during the break interval (a ≤ t ≤ b), and after the
break (t > b). Within each segment we compute the empirical variance estimator

σ̂2
(j) =

1

nj

∑
t∈Ij

η̂2
t ,

where Ij denotes the set of indices belonging to segment j ∈ {pre, break,post} and nj = |Ij |. Thus, σ̂2
(j)

provides a non-parametric way to approximate the regime-specific variances of the state disturbances.

By comparing the three local variance estimates, we establish heuristic rules to classify the structural
change. An abrupt change is identified if

σ̂2
break ≫ max{σ̂2

pre, σ̂
2
post},

with σ̂2
pre ≈ σ̂2

post, indicating that the volatility increase is localised in the interval [a, b]. Conversely, a
gradual change is characterised by a monotonic trend across the three segments,

σ̂2
pre < σ̂2

break < σ̂2
post (or vice versa),

consistent with a progressive structural transformation in the disturbance variance.

This diagnostic layer links naturally with the piecewise dynamic model: the breakpoint intervals [a, b]
guide the specification of Regime II, and the abrupt/gradual classification determines whether variance
interpolation or discrete shifts should be applied. In this way, detection and modelling are fully integrated
into a coherent seasonal adjustment framework.

5. APPLICATION TO OFFICIAL STATISTICS

To illustrate the practical relevance of the proposed framework, we analyse the monthly Spanish Indus-
trial Production Index (IPI, General index) published by the Spanish Statistical Office (INE). The sample
employed in the empirical illustration covers January 1992 to December 2019, a span chosen to provide
a long pre- and post-crisis perspective while avoiding the large and atypical disturbances introduced by
the COVID-19 pandemic. As one of the core short-term indicators of industrial activity, the IPI plays
a central role in monitoring the business cycle, and its seasonal adjustment is of direct importance for
economic analysis and policy support.

From an economic standpoint, the IPI is particularly interesting as it reflects a profound structural
transformation in the Spanish economy. The 2008 financial crisis marked a turning point: industrial output
fell sharply and, unlike in other European economies, the Spanish index never returned to its pre-crisis
level, as we can see in Figure 1. This persistent gap cannot be interpreted merely as a cyclical fluctuation
but rather as evidence of a deeper reallocation of resources. In particular, the crisis accelerated the decline
of construction-related manufacturing and contributed to a shift towards services, with tourism becoming
increasingly dominant as a source of growth and employment.

These features make the IPI a challenging case for seasonal adjustment. The series displays strong
and persistent seasonal patterns associated with production cycles and calendar effects, a persistent level
shift following 2008, and changes in volatility across different periods. Moreover, the underlying structural
change in the economy complicates the interpretation of long-term movements in the trend component.
Conventional methods that assume stability over the entire sample risk misattributing these permanent
changes either to seasonal variation or to temporary irregular shocks, thereby distorting the adjusted se-
ries. These characteristics make the IPI an ideal candidate to illustrate the need for a seasonal adjustment
procedure that explicitly accounts for structural breaks. The objective is not only to extract a seasonal
component but to do so in a way that remains valid and interpretable across distinct structural regimes.



Figure 1: Spanish Industrial Production Index (IPI), raw series (1992–2019).

Our empirical strategy follows the methodological steps developed in Sections 3 and 4. First, we fit a
Basic Structural Model (BSM) to the entire sample under the simplifying assumption of constant param-
eters. This deliberately misspecified model provides standardised innovations and smoothed disturbances
that serve as diagnostic tools. Figure 2 shows the standardised innovations, together with their squared
values, which reveal clear clusters of unusually high volatility around the 2008–2009 period.

Figure 2: Regular and squared standardised innovations.

To emphasise persistent deviations, we compute rolling averages of the squared residuals with a 24-
month window. The left- and right-aligned means, displayed in Figure 3, suggest the presence of a structural
break window surrounding the financial crisis. We set empirical thresholds based on the 95th percentile
of the rolling distribution and identify exceedances as potential indicators of instability. The lower bound
a of the breakpoint region is determined from the left-aligned mean, which is more sensitive to imminent
shifts, while the upper bound b is derived from the right-aligned mean, capturing the normalisation of vari-
ance post-break. The resulting interval, [a, b] = [11/2006, 03/2010], is interpreted as a breakpoint region,
suggesting a local structural change in variance or dynamics.



Figure 3: Left- and right-aligned rolling means of squared residuals (24-month window).

Once a structural change window has been identified, the next step is to understand the nature of
the change using smoothed disturbances obtained from the Kalman smoother. We begin with a graphical
analysis, Figure 4, to obtain a first clue about the type of structural disturbance. Red vertical lines mark
the boundaries of the structural change window previously defined.

Figure 4: Auxiliary residuals from irregular and level components with break interval highlighted.



Next, we compare local variance estimates before, during, and after the break. Within each period,
we compute the mean of squares of the smoothed disturbances. Figure 5 summarises these estimates.
The results indicate that the break is predominantly associated with the level component, consistent with
a structural decline in industrial output. In this application, the change is classified as abrupt in both cases.

Figure 5: Local variance estimates of smoothed disturbances before, during, and after the break.

Finally, we estimate the piecewise dynamic model proposed in Section 3, which explicitly allows the
variances of the state disturbances to change across regimes. Figure 6 displays the observed IPI series
together with the smoothed trend, seasonal and irregular components obtained from the Kalman smoother.
The decomposition clearly reflects the structural decline in the level component after the 2008 crisis, while
maintaining stable seasonal patterns and a well-behaved irregular.

Figure 6: Observed IPI series and smoothed trend, seasonal and irregular components from the
piecewise dynamic model.



6. CONCLUSIONS

This research provides a novel framework for seasonal adjustment in the presence of structural breaks,
combining the flexibility of state space models with a systematic treatment of variance changes across
regimes. By allowing for time-varying disturbance variances, the methodology accommodates both abrupt
and gradual changes, ensuring coherent decomposition of trend, seasonal, and irregular components even
in long series affected by structural instability.

A key contribution of the study is the integration of breakpoint detection and modelling into a uni-
fied framework. The detection procedure, based on rolling averages of squared innovations and smoothed
disturbances, provides an intuitive and effective way to identify break regions and classify the nature of
structural changes. Once identified, these changes are incorporated into the state space representation
through regime-specific variance structures, preserving the statistical consistency of the decomposition
and avoiding the distortions that would result from fitting separate models to unstable sub-periods.

The empirical illustration with the Spanish Industrial Production Index underscores the practical rele-
vance of the framework for official statistics. Structural breaks driven by financial crises, long-term sectoral
transformations, or institutional shifts are pervasive in socio-economic time series. If left untreated, they
can bias seasonal adjustments and compromise economic interpretation. The proposed methodology pro-
vides a principled and operational solution, fully compatible with the Kalman filter and existing state
space tools, thereby offering statistical offices a robust way to handle instability in the seasonal adjustment
of official indicators.

ACKNOWLEDGMENTS

This work is partially funded by the INE project CIDMEFEO. It has also been funded by the Xunta
de Galicia (Competitive Reference Groups, ED431C–2024/14) and by CITIC, as a center accredited for
excellence within the Galician University System and a member of the CIGUS Network, and subsidized by
the Regional Ministry of Education, Science, Universities and Vocational Training of the Xunta de Gali-
cia, and co-funded through the European Regional Development Fund (ERDF), ERDF Galicia 2021–27
Operational Programme (Ref. ED431G 2023/01).

REFERENCES

Durbin, J. and Koopman, S.J. (2012). Time Series Analysis by State Space Methods. Oxford University
Press.

Eurostat, 2009. ESS Guidelines on Seasonal Adjustment: 2009 edition.

Eurostat, 2015. ESS Guidelines on Seasonal Adjustment: 2015 edition.
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